Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 19(8): e1011377, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37603552

RESUMO

Antibodies and humoral memory are key components of the adaptive immune system. We consider and computationally model mechanisms by which humoral memory present at baseline might increase rather than decrease infection load; we refer to this effect as EI-HM (enhancement of infection by humoral memory). We first consider antibody dependent enhancement (ADE) in which antibody enhances the growth of the pathogen, typically a virus, and typically at intermediate 'Goldilocks' levels of antibody. Our ADE model reproduces ADE in vitro and enhancement of infection in vivo from passive antibody transfer. But notably the simplest implementation of our ADE model never results in EI-HM. Adding complexity, by making the cross-reactive antibody much less neutralizing than the de novo generated antibody or by including a sufficiently strong non-antibody immune response, allows for ADE-mediated EI-HM. We next consider the possibility that cross-reactive memory causes EI-HM by crowding out a possibly superior de novo immune response. We show that, even without ADE, EI-HM can occur when the cross-reactive response is both less potent and 'directly' (i.e. independently of infection load) suppressive with regard to the de novo response. In this case adding a non-antibody immune response to our computational model greatly reduces or completely eliminates EI-HM, which suggests that 'crowding out' is unlikely to cause substantial EI-HM. Hence, our results provide examples in which simple models give qualitatively opposite results compared to models with plausible complexity. Our results may be helpful in interpreting and reconciling disparate experimental findings, especially from dengue, and for vaccination.


Assuntos
Anticorpos Neutralizantes , Vacinação , Reações Cruzadas
2.
Epidemics ; 37: 100514, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34763161

RESUMO

Complex models of infectious diseases are used to understand the transmission dynamics of the disease, project the course of an epidemic, predict the effect of interventions and/or provide information for power calculations of community level intervention studies. However, there have been relatively few opportunities to rigorously evaluate the predictions of such models till now. Indeed, while there is a large literature on calibration (fitting model parameters) and validation (comparing model outputs to data) of complex models based on empirical data, the lack of uniformity in accepted criteria for such procedures for models of infectious diseases has led to simple procedures being prevalent for such steps. However, recently, several community level randomized trials of combination HIV intervention have been planned and/or initiated, and in each case, significant epidemic modeling efforts were conducted during trial planning which were integral to the design of these trials. The existence of these models and the (anticipated) availability of results from the related trials, provide a unique opportunity to evaluate the models and their usefulness in trial design. In this project, we outline a framework for evaluating the predictions of complex epidemiological models and describe experiments that can be used to test their predictions.


Assuntos
Doenças Transmissíveis , Epidemias , Teorema de Bayes , Doenças Transmissíveis/epidemiologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...